1月8日 范更华 教授学术报告(数学与统计学院)

来源:数学科研研究生澳门百乐门官网平台网址:时间:2021-01-05浏览:10设置

报 告 人:范更华 教授

报告题目Circuit Covers in Signed Graphs

报告时间:2021年1月8日下午3:30

报告地点:9#1508

主办单位:数学与统计学院、科学技术研究院

报告人概况

范更华,福州大学教授、博士生导师、曾任福州大学副校长以及全国组合数学与图论学会理事长,现任离散数学及其应用教育部重点实验室主任,1998年获国家杰出青年科学基金,2003年获教育部科技一等奖,2005年获国家自然科学二等奖获。主持多项国家自然科学基金重点项目与国家973计划课题。主要从事图论领域中的结构图论、极图理论、带权图、欧拉图、整数流理论、子图覆盖等方向的基础理论研究。他的成果以“范定理”、“范条件”被国内外同行广泛引用。一些成果还作为定理出现在国外出版的教科书中。担任国际图论界权威刊物《Journal of  Graph Theory》实行编委。

报告摘要

A signed graph is a graph G associated with a mapping . A signed circuit in a signed graph is a subgraph whose edges form a minimal dependent set in the signed graphic matroid. A signed graph is coverable if each edge is contained in some signed circuit. An oriented signed graph (bidirected graph) has a

nowhere-zero integer °ow if and only if it is coverable. A circuit-cover (circuit k-cover) of a signed graph G is a collection of signed circuits which covers each edge of G at least once (precisely k-times). It is obtained that every signed eulerian graph G has a circuit 6-cover, consisting of 4 circuit-covers of G, and as an immediate consequence, G has a circuit-cover with total number of edges at most . It is known that for every integer , there are infinitely many coverable signed graphs that have no circuit k-cover. Is it true that every coverable signed graph has a circuit 6-cover? This is still an open problem.


返回原图
/

XML 地图 | Sitemap 地图